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ABSTRACT: Symmetry and orderliness of two-dimensional (2D) levitating
microdroplet clusters are quantified with the Voronoi entropy (VE) and the
continuous symmetry measure (CSM). The time evolution of both VE and CSM
is investigated. To compare the correlation between the two measures of
orderliness, the Pearson correlation coefficient (PCC) was calculated. The
maximum correlation between the VE and CSM was found for clusters
containing the number of droplets enabling the formation of hexagons, i.e.,
droplet clusters possessing 6-fold symmetry. In other cases, the maxima and
minima of the VE and CSM are not always well correlated; moreover, in certain
cases, maxima of the CSM may correspond to the minima of the VE. Symmetry
and orderliness of 2D patterns could not be quantified with a single mathematical

measure.

1. INTRODUCTION

The concept of symmetry arises from Greek ovupETpia
(symmetria), which means an agreement in dimensions due to
proportion or by arrangement.l In classical antiquity,
symmetry meant commensurability and it was believed to
constitute a canon of beauty in nature and in art." In
mathematics, “symmetry” implies an invariance of an object
subjected to certain transformations, such as translations,
reflections, rotations, or scaling.” Symmetry considerations
play a fundamental role in modern physics and chemistry,”°
leading to the laws of conservation in physics’ and being
dominant in the particle physics,” field theory,” quantum
theory,”'? crystallography,'' condensed-matter physics,'”
thermodynamics,13”14 chemistry, and biology.l_5 Moreover,
symmetry considerations are of fundamental importance in
esthetics and in science—art relations.”"®

It is usually implied that symmetry changes abruptly or
intermittently. In other words, symmetry is viewed as a binary
feature, when an object is considered as either symmetric or
asymmetric. Despite this, a fundamentally new approach to
quantifying symmetry as a continuous measure of a pattern,
such as a two-dimensional (2D) set of points, was su%gested
and tested recently by Zabrodsky and co-workers.'®"*" They
introduced a continuous measure of deviation from the
symmetry of shapes, defined as the sum of minimum squared
distances required to move the points of the original shape to
obtain a symmetrical shape. The suggested continuous
symmetry measure (CSM) is applicable to various types of
symmetries in any dimensions.'°">° Such an approach to
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symmetry broke the “black—white” paradigm usually adopted
for the analysis of the symmetry of patterns.

We implement this approach for the analysis of the
symmetry of 2D dro;)let clusters levitating above heated
water/vapor interfaces.”' >’ It was demonstrated by our group
earlier that such self-assembled 2D clusters of monodispersed
condensed water microdroplets could levitate over a locally
heated layer of water, as depicted in Figure 1.>'~** Large
clusters form hexagonally ordered (honeycomb) structures
similar to colloidal crystals, while small (from one to several
dozens of droplets) clusters possess special symmetry proper-
ties. Small clusters, in particular, may demonstrate 4-fold, S-
fold, and 7-fold symmetry, which is absent from large clusters
and crystals. The symmetry properties of small cluster
configurations are universal, i.e., they do not depend on the
size of droplets and details of the interactions between
them.”**> We demonstrated that various approaches enabling
quantification and monitoring time evolution of the symmetry
of droglet clusters are possible, including the Voronoi entropy
(VE)***” and ADE classification.”®

In the present paper, we quantified the symmetry of dro(plet
clusters with the continuous symmetry measure (CSM)'®™>°
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Figure 1. Typical droplet cluster levitating above the water surface.
Scale bar is 200 pm.

in parallel with the calculation of the appropriate Voronoi
entropy.”**”** The Voronoi tessellation or the diagram of a
2D area with a set of nodes in it divides the area into polygonal
zones or cells, with each cell containing points that are closest
to a given node. Such tessellation represents the 2D special
case of the Wigner—Seitz cell tessellation.”> We calculate the
CSM of a Voronoi diagram of a droplet cluster and not the
CSM of the cluster itself, considering the theorem stating that
a Voronoi cell always has the same point symmetry group as
the underlying lattice of the 2D pattern.*

Large levitating droplet clusters demonstrate 6-fold
symmetry, as shown in Figure 1, and in accordance with the
Neuman—Minnigerode—Curie principle, their physical proper-
ties (such as planar density, thermal, and electrical
conductivity) must be invariant with respect to the symmetry
group of hexagon.”!

2. METHODS

Levitating droplet clusters were generated according to the
protocol described in detail earlier.””~*° Experiments were
carried out with distilled water containing microconcentration
of surfactants suppressing the thermocapillary flows, as
described in ref 32. The experimental setup included a cuvette
with a submillimeter-thick layer of water, heated from the
bottom by an Omicron Laserage BrixX 808-800HP semi-
conductor laser, wavelength 0.808 ym. The unit including a
peristaltic pump and a confocal distance sensor provided the
control thickness of the water layer within 200 + 1 ym. The
water temperature at the periphery of the water layer was kept
at the level of 3.8 + 0.3 °C.

The laser beam was focused on the spot with a diameter of 1
mm. The temperature field at the water/vapor interface was
registered with a FLIR A65Ssc thermocamera (spectral range,
7.5—14.0 um; thermal resolution, AT = 0.05 K). The thermal
camera was equipped with macro-objective close-up IR 2.9X
(the dimension of the pixel within the infrared (IR) image was
0.0S mm). The control of laser beam power was performed
with the Thorlabs units, namely, the PM200 control block and
the S401C power sensor (spectral range, 0.19—10.6 ym; power
range, 10 W to 1 W; accuracy, +5%). Videos were taken with
a Zeiss Axio Zoom V16 microscope, equipped with a pco.edge
5.5 charge-coupled device (CCD) camera.

The generation of clusters built of the constant number of
droplets was carried out in two stages. In the first stage, the
power of the laser was fixed at a low level, providing the
maximal local temperature of 37 °C. At this stage, droplets
easily entered the heated gas area. When the desired number of
droplets was attained, the power of the laser was abruptly
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increased, providing the temperature of the heated water spot
of 67 °C. Heating yielded the consequent increase in the
velocity of the steam—air flow. Condensing droplets, which
entered into the heated spot were heavy enough for levitation,
whereas new-born small droplets were blown out by the
ascending steam—air flow. Thus, the resulting stable droplet
cluster, such as depicted in Figure 1, built of the fixed number
of droplets of almost equal diameters was created.

3. RESULTS AND DISCUSSION

Let us define the continuous symmetry measure (CSM).
Consider a nonsymmetrical shape built of n; points M; (i = 1,
2, .., n;) and a given symmetry group G. The CSM, denoted as
S(G), is a function of the minimal average square displacement
the points M; of the shape have to undergo to acquire the
prescribed G symmetry. Assume that the G-symmetrical shape
emerges from the set of points M; Since the set M; is
established, the continuous symmetry measure is defined as

n
1 .
$(G) = — Y. IM, — KIP
My =1

(1)

(square values in eq 1 are taken so that the function is
isotropic, continuous, and differentiable). First, the points of
the nearest shape possessing the G symmetry should be
identified. The algorithm enabling identification of the set of
points M; constituting this symmetrical shape is suggested in
refs 16—20. The example supplied in Figure 2 depicts an

M

M3

M 03

A

Figure 2. Calculation of the CSM for the triangle M;M,M; (A). (B)
Equilateral triangle My My,My; represents the symmetrical shape
corresponding to the given triangle M;M,M;. (C) Calculation of
CSM. Point O is the common centroid.

equilateral triangle M, My,M,; representing the symmetric
shape corresponding to the given triangle M M,M;. The
symmetric equilateral triangle My My,My; emerges from the
transformation of the given triangle M;M,M; as follows: vertex
M; is rotated counterclockwise around the centroid O of the

pristine triangle M;M,M; by @ radians (in other words,

one of vertices of the triangle M;M,M; remains fixed); thus,
the triangle M;M;M; emerges. Afterward, the location of the

centroid O’of the triangle M;M;Mj is identified. Centroid O’ is

2(i—1

rotated clockwise around the centroid O by — ) radians.

Thus, the equilateral triangle My My,M,; shown in Figure 2,
representing the symmetrical shape closest to the pristine
nonsymmetrical triangle M;M,Ms, is created.’®™"? Since the set
M, is established, the CSM is calculated by eq 1. Consider that
we calculate the CSM of the Voronoi diagram of the droplet
cluster and not of the cluster itself. The point symmetry group
of the polygonal Voronoi cells coincides with the symmetry
group of the pristine droplet cluster.”

As suggested in refs 16—20, CSM introduced by eq 1
estimates a “minimal effort” necessary for the transformation of
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an original shape into the symmetric one. The idea of such a
minimal effort resembles the Gauss principle of least
constraint, which is equivalent to the Hamilton’s variational
principle in classical mechanics.” Minimization of CSM and
the Gauss principle of least constraint represent the least-
squares principles.'®">*** The extremal (minimal) properties
of the aforementioned procedure enabling minimization of
CSM still require rigorous proof. Despite this, in our treatment
of the symmetry of droplet clusters, we follow the procedure
introduced in refs 16—19, which was successfully employed for
the quantification of the symmetry of organic molecules.’*™*°

CSM of the triangle M;M,M; corresponds to the sum S(G)
introduced by eq 1. This is necessary for the transformation of
the triangle M,M,M; into the symmetrical one My My M,
(the symmetry group D;). The entire procedure of the
calculation of the CSM is illustrated in Figure 2. Obviously,
CSM, in this case, is given by eq 2

CSM = %(IMIMOIIZ + IM,Mg,l* + IM;M,*) @)
The details of the mathematical procedure enabling the
calculation of CSM are supplied in refs 16—20. We applied the
ideas suggested in refs 16—20 for the calculation of the time-
dependent CSM for the droplet clusters, such as depicted in
Figure 1, with one difference: the CSM was normalized to the
distance between the initial and eventual centroids.

We calculated the CSM of the Voronoi diagrams emerging
from the locations of centers of droplets in the cluster. The
Voronoi diagram of a given cluster is composed of N polygons.
The CSM was calculated for each polygon, as discussed above,
and averaged. Thus, the time evolution of the averaged CSM of
the cluster was elucidated. In parallel, the time evolution of the
Voronoi entropy was calculated for the same droplet cluster.
The Voronoi entropy of the given set of points corresponding
to the Voronoi tessellation or diagram quantifies ordering in
this set.”*">° A Voronoi tessellation of an infinite plane is a
partitioning of the plane into regions based on the distance to a
specified discrete set of points (called seeds or nuclei®*™*").
For each seed, there is a corresponding region consisting of all
points closer to that seed than to any other.”*™*’ A typical
Voronoi diagram corresponding to the real levitating droplet
cluster is depicted in Figure 3. It is noteworthy that the Bond
number for the droplets constituting the cluster is much
smaller than unity; thus, all droplets may be represented by the
points located in the centers of droplets.

The Voronoi entropy of the given set of points located in a
plane is defined as

-y Rl P
Z 3)

where p; is the fraction of polygons possessing n edges for a
given Voronoi diagram (also called the coordination number of
the polygon) and i is the total number of polygon types with
different numbers of edges.”* >’ The summation in eq 3 is
performed from i = 3 to the largest coordination number of
any available polygon, e.g., to i = 6, if a polygon with the largest
number of edges is a hexagon.

Figure 4 depicts the time evolution of the averaged CSM
and Voronoi entropy for a levitating droplet cluster built of 11
droplets. It is expected that the CSM and Voronoi entropy of
the same cluster are correlated; indeed, both of these values
quantify orderliness of the given 2D pattern. However, the
situation is more complicated. Separated peaks in the CSM,

SVO[‘
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Figure 3. Voronoi diagram corresponding to the real droplet cluster.
Vertices of the ideal polygons are depicted with crosses.
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Figure 4. (A—C) Evolution of the levitating droplet cluster of 11
droplets. (D—F) Corresponding Voronoi diagrams and VE. Vertices
of the ideal polygons are depicted with crosses. (G) Time
dependences of the CSM and Voronoi entropy of the cluster are
presented. The blue curve corresponds to the time evolution of
Voronoi entropy and the red curve corresponds to the time
dependence of CSM. Letters A, B, and C in black frames mark
areas corresponding to the Voronoi entropy of D, E, and F
tessellations.

recognized from Figure 4, correspond to the same value of the
Voronoi entropy. Figure 5 depicting the time evolution of the
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Figure S. Time evolution of the CSM and Voronoi entropy for various levitating droplet clusters. The blue curve corresponds to the time evolution

of Voronoi entropy and the red curve corresponds to the time dependence of CSM. The clusters contain: (A) 10 droplets;

= 0.375; and (D) S1 droplets; Tay

= 0.747; (C) 34 droplets, r

droplets, r. w

xy

ry = 0.179; (B) 19

= 0.29.

CSM and Voronoi entropy for the droplet clusters built of 10,
19, 34, and 51 droplets supports this observation. Maxima and
minima of the CSM and Voronoi entropy are not always
correlated; moreover, maxima of CSM may correspond in time
to the minima of the Voronoi entropy. What is the physical
reason of the oscillations of the Voronoi entropy and CSM,
recognized in Figure 52 It seems plausible to relate these
oscillations to the vibrations of water droplets.”” The
characteristic frequencies of these vibrations are located in
the range of f & 1—50 Hz.”’

It was instructive to estimate the correlation between the
Voronoi entropy and CSM with the Pearson product-moment
correlation coefficient r,,

_ TE-®-7)
JZG-%Y(-5) )

where x and y are the values of the Voronoi entropy S, and
CSM, respectively, and % and 7 are their averaged values using
the frame-by-frame averaging of the cluster images. The values
of the Pearson correlation coefficients r,, are summarized in
the caption of Figure 5. It is recognized that the maximal
correlation between the Voronoi entropy and CSM (r,, =
0.747) is attained for the droplet cluster containing 19
droplets. It is seen that the cluster of 19 droplets enables

construction possessing 6-fold symmetry, as shown in Figure

xy
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5B, whereas 10, 34, and S1 droplets do not allow the formation
of completely symmetrical 6-fold patterns, and consequently,
the correlation between the Voronoi entropy and the
continuous measure of symmetry is low.

This observation is consistent with the hypothesis that
orderliness and symmetry are strongly correlated in physical
systems.”” 2D levitating droplet clusters supply a flexible
controlled model system enabling verification and quantifica-
tion of this hypothesis. We recognize that the continuous
measure of symmetry and the Voronoi entropy of the same
pattern may be weakly correlated; this possibility is illustrated
in Figure 6. The Voronoi tessellation presented in Figure 6 is
built from the deformed identical hexagons. Obviously, the
Voronoi entropy of such a tessellation is zero (S, = 0);
whereas, the CSM of the same pattern is not zero (CSM =
0.084) and this is due to the fact the presented hexagons are
“distorted” from the ideal 6-fold symmetric shapes. Additional
insights clarifying the interplay between the Voronoi entropy
and CSM are necessary. However, it may be concluded that
orderliness of 2D patterns could hardly be quantified with a
single mathematical measure.

4. CONCLUSIONS

We report quantifying of ordering in 2D patterns emerging
from the droplet clusters levitating above the hot water. Well-

https://dx.doi.org/10.1021/acs.jpcc.0c10384
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Figure 6. Voronoi tessellation built only of hexagons. The Voronoi
entropy of the tessellation S, = 0, whereas CSM = 0.084.

vor

ordered microdroplet clusters supply the fascinating laboratory
system, enabling the model study of physical and biological
processes.”' ~*>°%%7 We tested the hypothesis that ordering
and symmetry in the droplet clusters are necessarily
correlated.”” It is usually assumed that the symmetry of
physical objects or patterns changes intermittently; in other
words, an object is considered as either symmetric or
asymmetric. The alternative approach was suggested, devel-
oped, and tested in refs 16—20, in which symmetry was
quantified with a continuous measure of the pattern. The
authors of refs 16—20 suggested a continuous measure of
symmetry, defined as the sum of the minimum squared
distances required to move the 2points of the original pattern to
obtain a symmetrical shape.'™" It was demonstrated that this
continuous measure is applicable to any type of symmetry in
any dimensions.'">° We compared the time evolution of the
Voronoi entropy and the continuous measure of symmetry
established in parallel for the same patterns emerging from
water droplets forming the levitating clusters. The maximal
Pearson correlation between the Voronoi entropy and
continuous measure of symmetry was registered for the cluster
built of 19 droplets, enabling the construction of the 2D
pattern demonstrating the exact 6-fold symmetry. The
relatively low Pearson correlation coeflicient was inherent for
clusters in which perfect symmetry was impossible. Thus, the
Voronoi entropy and the continuous measure of symmetry,
both quantifying ordering in 2D patterns, are not necessarily
correlated. Thus, it seems plausible to suggest that orderliness
of 2D point patterns could hardly be quantified with a single
mathematical measure.
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