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a b s t r a c t

A two-step approximate analytical solution for the normal emittance of a plane layer of

an absorbing, scattering and refracting medium is derived analytically. The analysis is

based on the transport approximation and the two-step solution method for radiative

transfer. The high accuracy of the approximate solution, examined by comparing its

results to those obtained independently by the discrete ordinates and Monte Carlo

methods, makes it suitable for application in combined experimental-analytical studies

to identify selected spectral radiative properties of dispersed media in the range of

semi-transparency.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

High-temperature properties of semi-transparent
disperse media are pertinent to a range of engineering
applications such as chemical and materials processing
and energy conversion technologies. Absorption and scat-
tering characteristics are particularly needed to analyze
combined heat transfer in such media. Direct measure-
ments of reflectance and transmittance at elevated
temperatures lead to difficulties in interpreting the
experimental data, associated with the presence of ther-
mal radiation emitted by hot samples. Alternatively,
ll rights reserved.
normal emittance of thin isothermal samples measured
at high temperatures can be used to determine tempera-
ture dependence of the absorption coefficient. While the
latter approach is straightforward for non-scattering
media, the identification problem becomes considerably
more complex if scattering is present. An approximate
analytical solution to normal emittance of a plane layer of
an absorbing, scattering, and refracting medium provides
a useful analytical tool for studying the effects of the
problem parameters and identification of radiative pro-
perties from emittance measurements.

The objective of this paper is two-fold: (1) to present a
novel approximate analytical model for the normal emit-
tance of a refracting and scattering medium layer;
and (2) to examine the accuracy of the approximate
model using reference numerical solutions to the model
problem. Two different numerical methods, a high-order
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Nomenclature

A absorptance
B Planck function
d sample thickness
G incident radiation (radiation energy density)
g function introduced by Eq. (7)
I radiation intensity
N number of Monte Carlo rays
n index of refraction
R reflectance; random number from uniform

distribution (0,1)
S radiative source function
T transmittance
z coordinate across the layer

Greek symbols

a absorption coefficient
b extinction coefficient
g coefficient in boundary condition (9)
e emittance
k index of absorption

m direction cosine
m asymmetry factor of scattering
r reflectivity
s scattering coefficient
t optical thickness
F function introduced by Eq. (14)
o scattering albedo

Subscripts and superscripts

a absorbed
c critical
e external
i internal
n normal
h hemispherical
s scattering
t transmitted
tr transport
þ , – directions with positive and negative m,

respectively
0\ directional-hemispherical

Fig. 1. Plane-parallel layer of an isothermal, absorbing, emitting, scattering,

and refracting medium.
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discrete ordinates method and the Monte Carlo method,
are employed to obtain the reference solutions with
maximum confidence. Furthermore, the effects of both
refraction at the medium boundaries and anisotropy of
volumetric scattering on the normal emittance of the
medium layer are analyzed in the present study.

The traditional problem statement used in this paper
may not be totally adequate to the physical reality in
some cases. One should recall a contradiction between the
Fresnel boundary condition and a significant volumetric
scattering near the interface. This difficulty and other
possible inconsistencies are discussed in the last section
of the paper. Some potential applications of the suggested
analytical model to identify infrared radiative properties
of dispersed materials at elevated temperatures are also
considered.

2. Problem statement

A plane layer of the model participating medium is
shown schematically in Fig. 1. The medium is isothermal,
absorbing, emitting, scattering, and refracting. The radia-
tive properties of both the disperse phase and host
medium are constant across the layer. The absorption
index of the host medium is assumed to be very small as
typical for semi-transparent materials in their semi-
transparency ranges. The surroundings are radiatively
non-participating (cold and black) and there is no external
irradiation on the medium layer. As elaborated in the
following sections, the effects of the following physical
configurations are investigated: (i) refractive vs. non-
refractive boundaries, and (ii) isotropic vs. anisotropic
scattering. Note that non-refractive boundaries are
encountered in a broad range of engineering problems
including high-porosity fibrous insulations and foam-like
materials, suspensions of particles in a gas, and other
high-porosity systems.
3. Approximate analytical solution for normal emittance

The two-step solution method for the radiative trans-
fer equation (RTE) is applied to the model problem shown
in Fig. 1. In this method, the transport approximation for
the scattering phase function is employed in the first
step. For a plane parallel isothermal layer of an absorb-
ing, emitting, refracting, and scattering medium, the
transport RTE is integrated over the azimuthal angle,
leading to [1,2]

m @I

@ttr
þ I¼ S, 0ottr ot0

tr ð1Þ



L.A. Dombrovsky et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 1987–1994 1989
where I¼ Il=½2pn2BlðTÞ� is the dimensionless spectral
intensity of radiation and the source function in the
right-hand side of Eq. (1) is

SðttrÞ ¼
otr

2
GðttrÞþð1�otrÞ, GðttrÞ ¼

Z 1

�1
Iðttr ,mÞ dm

ð2Þ

Hereafter, the subscript l is omitted for brevity. The
spectral incident radiation G is proportional to the spec-
tral radiation energy density [2]. In the above relations,
ttr¼btrz is the actual transport optical thickness,
t0

tr ¼ btrd=2 is a half of the overall transport optical
thickness of the plane layer, d is the geometrical thickness
of the plane layer, otr ¼ str=btr is the transport albedo of
the medium (btr¼aþstr, str ¼ sð1�mÞ), and m¼ cos y,
where the angle y is measured from the external normal
direction. Note that Eqs. (1) and (2) are true in the case of
an isotropic medium. A more complex formulation should
be considered for anisotropic media when radiative prop-
erties of a small volume of the medium depend on the
angle of the radiation incidence.

The boundary conditions for RTE (1) are as follows:

@I

@ttr

����
ttr ¼ 0

¼ 0 Iðt0
tr ,�mÞ ¼ r

0\ðmÞIðt0
tr ,mÞ, m40 ð3Þ

where r
0\ is the directional-hemispherical reflectivity of

the boundary given by Fresnel’s relations [2].
Normal emission is determined by finding I

þ

n ðttrÞ ¼

Iðttr ,1Þ and I
�

n ðttrÞ ¼ Iðttr ,�1Þ from

dI
þ

n

dttr
þ I
þ

n ¼ S, �
dI
�

n

dttr
þ I
�

n ¼ S ð4Þ

I
�

n ð0Þ ¼ I
þ

n ð0Þ, I
�

n ðt0
trÞ ¼ rnI

þ

n ðt0
trÞ, rn ¼ r

0\ðm¼ 1Þ ¼
n�1

nþ1

� �2

ð5Þ

Note that the above expression for rn is true in the
case of a weakly absorbing medium with k5n. The
following formal solution for the normal emittance is
then obtained as

en ¼ ð1�rnÞI
þ

n ðt
0
trÞ ¼ 2

1�rn

1�Ctr
expð�t0

trÞ

Z t0
tr

0
S coshðttrÞdttr ,

Ctr ¼ rn expð�2t0
trÞ ð6Þ

An analytical relation for the source function is needed
to evaluate the integral in Eq. (6). For the problem under
consideration, this relation can be found using the mod-
ified two-flux approximation developed by Dombrovsky
et al. [3,4]. According to this approximation, the dimen-
sionless irradiation is expressed as

G¼
ð1�mcÞgþ2mcð1�otrÞ

1�otrmc

, mc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1=n2

q
ð7Þ

where the function g is determined by the following
boundary-value problem:

�
d2g

dt2
tr

þz2g ¼ 2z2
ð8Þ

g0ð0Þ ¼ 0, ð1þmcÞg
0
ðt0

trÞ ¼�2ggðt0
trÞ ð9Þ
z2
¼

4ð1�otrÞ

ð1þmcÞ
2
ð1�otrmcÞ

, g¼ 1�rn

1þrn

¼
2n

n2þ1
ð10Þ

Note that the use of normal reflectivity rn in the
expression for coefficient g in Eq. (10) is an additional
approximation and it may lead to a considerable error for
high values of the refractive index and the scattering
albedo of the medium. In a more accurate approach, one
can use a value of the reflectivity averaged over the
angles, r, as it was done by Siegel and Spuckler [5]:

r¼ 1

2
þ
ð3nþ1Þðn�1Þ

6ðnþ1Þ2
þ

n2ðn2�1Þ2

ðn2þ1Þ3
ln

n�1

nþ1

� �

�
2n3ðn2þ2n�1Þ

ðn2þ1Þðn4�1Þ
þ

8n4ðn4þ1Þ

ðn2þ1Þðn4�1Þ2
ln n ð11Þ

The analytical solution to the above problem is as
follows:

g=2¼ 1�
coshðzttrÞ

c0þðð1þmcÞ=2gÞzs0
,

s0 ¼ sinhðzt0
trÞ c0 ¼ coshðzt0

trÞ ð12Þ

The resulting relation for the normal emittance,
derived on the basis of the modified two-flux approxima-
tion and by subsequent analytical integration of the RTE,
is as follows:

en ¼
1�rn

1�Ctr
1�

1�mc

1�otrmc

otrF
c0þðð1þmcÞ=2gÞzs0

� �
1�expð�2t0

trÞ
� 	

ð13Þ

where

F¼
1

2sinhðt0
trÞ

sinh½ðzþ1Þt0
tr �

zþ1
þ

sinh ðz�1Þt0
tr

� 	
z�1

( )
ð14Þ

Obviously, these equations reduce to the well known
exact formula for a non-scattering medium (otr¼0) [1,2]:

en ¼
1�rn

1�rnexpð�t0
aÞ

1�expð�t0
aÞ

� 	
, t0

a ¼ ad ð15Þ

One can see that spectral dependences of n(l), otr(l),
and t0

trðlÞ determine the spectral normal emittance of a
refracting, scattering, and absorbing medium.

The derived analytical solution employs the modified
two-flux approximation reported in [3,4], which enables
us to determine the spectral radiation energy density.
However, in the present study, this differential approx-
imation is used only at the first stage. A subsequent
integration of the RTE with the known source function
at the second stage of the analytical solution makes the
present approach much more accurate. A similar two-step
procedure was recently analyzed by Dombrovsky and
Lipiński [6] (see also [7]).

4. Numerical determination of the normal emittance

The reference numerical methods selected in this
study to assess the accuracy of the approximate analytical
solution employ, in contrast to the latter approach, the
relation between the normal absorptance and normal-
hemispherical reflectance and transmittance to indirectly
determine the normal emittance of the plane layer of the
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uniform and isothermal medium:

An ¼ 1�Rn�h�Tn�h ð16Þ

with a subsequent use of the Kirchhoff law, en¼An. The
normal-hemispherical reflectance, Rn�h, and transmit-
tance, Tn�h, in Eq. (16) are computed by analyzing
radiative transfer through a plane parallel cold layer
exposed on one side to a normally incident collimated
irradiation.

4.1. Discrete ordinate method

The discrete ordinate method (DOM) is employed as
the first reference numerical method. The RTE is solved
for the discrete radiative intensity field, and consequently
the terms of Eq. (16) and the normal emittance are
determined [1,2,8]. To mitigate the ray effect resulting
from coarse angular discretization of the radiation inten-
sity in a medium with Fresnel’s boundaries, the composite
DOM (CDOM) is employed [9–12]. In this method, the
angular integral over the entire range of the cone angle,
�1omo1 in Eq. (2), is split into integrals over three
subintervals: –1omo�mc,�mcomomc, and mcomo1.
Subsequently, a set of quadrature points is used in each
subinterval. In this study, a high order Gaussian quad-
rature scheme with 60 points is applied, where 20 points
are used in the intervals �1omo�mc and mcomo1,
and 40 points are used in the interval �mcomomc. The
details of the procedure to determine the quadrature
points are given in [13]. The uncertainty in the direc-
tional-hemispherical reflectance and transmittance asso-
ciated with this quadrature is estimated to be less
than 5%.

4.2. Monte Carlo method

The collision-based Monte Carlo method is employed
as the second reference method [13]. The terms of
Eq. (16), and consequently the normal emittance, are
determined statistically. A large number of stochastic rays
Nrays¼107 is launched normally to the medium boundary
ttr ¼ t0

tr . A ray is transmitted into the medium through the
upper boundary if the following relation is satisfied:

Rt o1�r0\ ð17Þ

where r
0\ is the directional-hemispherical boundary

reflectivity given by Fresnel’s relations for arbitrary angle
of incidence. In particular, for external rays incident
normally on the medium layer, r0\ is the normal-hemi-
spherical reflectivity, rn, as defined by Eq. (5). Relation
(17) is also used for internal rays incident at an arbitrary
angle of incidence momc. The location of attenuation
inside the medium is determined from

s¼�
1

b
ln Rs ð18Þ

where the extinction coefficient b¼aþs is given by

b¼
2t0

tr ½1þmðotr�1Þ�

dð1�mÞ ¼
2t0

a ½1þmðotr�1Þ�

dð1�mÞð1�otrÞ
ð19Þ
If the following condition is satisfied

Roo1�o, o¼ otr

1þmðotr�1Þ
ð20Þ

the ray is absorbed at the location of attenuation, its
history is terminated, and the counter of absorbed rays Na

is updated. Otherwise, the ray is scattered and the
scattering direction is determined from

m¼
1

2m ð1þm
2
Þ�

1�m2

1þm�2mRm


 �2
� �

, ma0

1�2Rm, m ¼ 0

8><
>: ð21Þ

In Eqs. (17), (18), (20), and (21), Rt, Rs, Ro, and Rm are
different random numbers drawn from a uniform distri-
bution (0,1). A ray incident at the medium boundaries
from within the medium and transmitted through the
boundaries is considered as lost. After all Nrays have been
traced, the normal emittance is calculated as

en ¼ An �
Na

Nrays
ð22Þ

The expressions for the extinction coefficient and the
scattering albedo given by Eqs. (19) and (20), respectively,
have been derived using the definitions of the ordinary
and transport radiative properties and the optical thick-
ness. The explicit relations for the determination of the
direction of the scattered ray (Eq. (21)) have been
obtained by inverting the appropriate cumulative distri-
bution functions [1,2]. The error of the Monte Carlo
method, estimated by calculating the relative difference
between the normal emittance obtained for Nrays¼107

and 106, is below 1%.
5. Results

5.1. Comparison of approximate analytical solution with

reference numerical results

5.1.1. Nonrefracting medium

The boundary condition is significantly simplified in
this case and the total internal reflection of the radiation
at the medium boundaries is omitted from analysis. This
allows for application of alternative solutions for the
spectral irradiation based on the two-flux approximation
or the P1 approximation [1,2,7]. These solutions can be
written in the following form:

en ¼ 1�
otrF

2c0þzs0=g

� �
1�expð�2t0

trÞ
� 	

ð23Þ

The function F remains the same as introduced by
Eq. (14), but the coefficients z and g are modified as

z2
¼ ð4�NapprÞð1�otrÞ g¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�NapprNmod=4

p ð24Þ

where Nappr¼0 and Nappr¼1 correspond to the two-flux
and P1 approximations, respectively. Nmod ¼ 0 and
Nmod ¼ 1 correspond to Marshak’s boundary condition
and Pomraning’s boundary condition, respectively [7]. In
the limiting case of an optically thick medium, Eq. (23) is



Table 1
The normal emittance of an optically thick scattering medium.

otr en

Two-flux (DP0) P1 P1,mod DOM MC

0.1 0.9823 0.9792 0.9804 0.9836 0.9837

0.2 0.9621 0.9558 0.9582 0.9647 0.9648

0.3 0.9389 0.9290 0.9328 0.9427 0.9428

0.4 0.9116 0.8978 0.9030 0.9166 0.9167

0.5 0.8787 0.8606 0.8674 0.8847 0.8851

0.6 0.8377 0.8150 0.8234 0.8445 0.8448

0.7 0.7842 0.7564 0.7664 0.7912 0.7914

0.8 0.7082 0.6750 0.6868 0.7147 0.7148

0.9 0.5811 0.5435 0.5563 0.5850 0.5852

0.95 0.4635 0.4263 0.4385 0.4644 0.4645

Fig. 2. Normal emittance of a layer of scattering nonrefracting medium.

Comparison of the derived analytical solution (solid lines) and numerical

calculations (circle points—DOM, triangle points—MC): 1—t0
a ¼ 0:1,

2—t0
a ¼ 0:5, 3—t0

a ¼ 1, 4—t0
a b1.

Fig. 3. Normal emittance of a layer of refracting and scattering medium

at n¼2. Comparison of the derived analytical solution (solid lines—with

the use of the normal reflection coefficient in Eq. (10) and dashed

lines—with the use of averaged reflection coefficient (11)) with exact

numerical calculations (circle points—DOM, triangle points—MC) at

n¼2: 1—t0
a ¼ 0:1, 2—t0

a ¼ 0:5, 3—t0
a ¼ 1, 4—t0

a b1.
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simplified to

en ¼ 1�
2otr

ð1þzÞð2þz=gÞ
ð25Þ

A comparison of the normal emittance obtained using
Eq. (25) and the reference numerical methods is pre-
sented in Table 1. Note that DOM and MC results shown
in Table 1 are reported for the absorption optical thick-
ness t0

a ¼ 10. Additional MC computations were per-
formed for t0

a ¼ 100, for which the MC results remained
practically unchanged with the decimal accuracy from
Table 1. Good agreement is observed between the analy-
tical and numerical results. The analytical solution based
on the two-flux approximation tends to be more accurate
than those based on the P1 and P1,mod approximations.

A comparison of the normal emittance obtained using
the analytical solution and the reference numerical meth-
ods for selected values of the absorption optical thickness
t0

a ¼ 2ð1�otrÞt0
tr is presented in Fig. 2. One can see that

the analytical results are in excellent agreement with
those obtained using the reference numerical methods.
Note that the presence of scattering can considerably
increase the normal emittance for an optically thin
medium. The latter trend was observed for the hemi-
spherical emittance in [14,15].
5.1.2. Refracting medium

A comparison of the normal emittance obtained using
the analytical solution and the reference numerical meth-
ods for the refractive index of the host medium of n¼2 is
presented in Fig. 3. The agreement between the analytical
solution and exact numerical results is satisfactory, and it
further improves when the average reflection coefficient
given by Eq. (11) is used at the first step of the analytical
solution.

It is important that the effect of scattering on normal
emittance is similar to that observed for the above
analyzed case of n¼1. The increase of emittance due to
scattering was observed experimentally by Rozenbaum
et al. [16] for optically thin samples of semi-transparent
scattering materials. An equivalent result was recently
obtained for absorptance of porous ceramics by Dombrovsky
et al. [17]. It was noted that a porous sample of a weakly
absorbing substance exhibits significant absorption in the
case when numerous pores lead to very long path of photons
in the sample. One should recall that according to [17] this
effect can be used to determine a very low absorption
coefficient of dense materials.

5.2. Effect of scattering phase function on normal emittance

In the above analysis, we considered the transport RTE
assuming that it is sufficient to obtain satisfactory results
for arbitrary scattering phase function of the medium. The
error of the transport approximation for the problem
under consideration could not be estimated by referring
to the past work by the authors. Thus, additional compu-
tations are performed for anisotropic scattering phase
functions to estimate this error.

The effect of the scattering phase function on the
normal emittance is examined in Figs. 4 and 5. The
approximate analytical solution and the reference meth-
ods give practically the same results. However, the error
of DOM becomes more pronounced for the non-refracting
optically thick medium (n¼1, t0

a b10) and high transport



Fig. 5. Effect of scattering phase function on normal emittance of

refracting and scattering medium at n¼2. Comparison of transport

approximation (solid lines) and Henyey–Greenstein approximation

(circle points—DOM, triangle points—MC; big open symbols—m¼ 0:5,

small filled symbols—m¼ 0:9): 1—t0
a ¼ 0:1, 2—t0

a ¼ 0:5, 3—t0
a ¼ 1,

4—t0
a b1.

Fig. 6. Characteristics of scattering by a porous material containing

monodisperse pores with radius a.

Fig. 4. Effect of scattering phase function on normal emittance of

scattering nonrefracting medium. Comparison of transport approxima-

tion (solid lines) and Henyey–Greenstein approximation (circle

points—DOM, triangle points—MC; big open symbols—m¼ 0:5, small

filled symbols—m¼ 0:9): 1—t0
a ¼ 0:1, 2—t0

a ¼ 0:5, 3—t0
a ¼ 1, 4—t0

a b1.
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scattering albedo (otr40.8). The scattering phase func-
tion has only a minor effect on the normal emittance.
At the same time, the results obtained by the transport
approximation considerably differ from the numerical
ones for mZ0:5, particularly for larger values of otr and
refracting samples of moderate optical thickness. Thus,
typical ranges of m are evaluated here for selected types of
scattering media. Consider the effect of pore size on the
value of m and specific transport scattering coefficient (per
unit volume fraction of pores) Etr

s ¼ 0:75Qtr
s =a for a weakly

absorbing porous material with index of refraction n¼2 at
wavelength l¼3 mm. The results of calculations using the
Mie theory are presented in Fig. 6. The region of high
scattering is characterized by asymmetry factor of
m¼ 0:3�0:6. At the same time, the value of m is very
small for pores with radius ao0.3 mm. Thus, m¼ 0:5, used
in our calculations, is close to the upper estimate for
strongly scattering materials, whereas m¼ 0:9 is typical
for more specific cases.

The role of the transport approximation in the analy-
tical approach is examined by comparing the results of
the reference numerical methods employing the selected
Henyey–Greenstein functions (Figs. 4 and 5) and the
analytical solution using the transport approximation
(Figs. 2 and 3). The transport approximation is confirmed
as a suitable approach in the derivation of the approx-
imate analytical solution. Furthermore, the validity of the
transport approximation is important for identification of
selected radiative properties of semi-transparent scatter-
ing materials based on the measurements of the normal
emittance because it allows for the reduction of required
problem parameters to the index of refraction, the
absorption coefficient, and the transport scattering coeffi-
cient. As to the effect of unknown scattering phase
function, it can be estimated using our computational
results for different Henyey–Greenstein functions.

6. Applicability of the analytical solution

The traditional problem statement used in this paper
has several physical limitations that may render it inade-
quate for some problems. We have already emphasized
that the above analysis based on the RTE is applicable
only in the case of a semi-transparent medium, which
excludes the application of the approximate analytical
solution for highly absorbing and almost opaque materi-
als, i.e. in spectral ranges where thermal radiation is
emitted by a very thin surface layer of thickness compar-
able with the wavelength. For such materials, emittance
reduces to emissivity and the volumetric analysis based
on the RTE becomes inadequate. The volumetric model
described in this paper can, however, still be considered
to model a rough surface of an opaque material by
representing the structures of the rough surface by an
equivalent cloud of single randomly positioned particles
placed over a smooth surface of the same opaque mate-
rial. The main physical features of the radiation absorp-
tion, scattering, and emission in such a cloud are expected
to be similar to that by a rough surface. One should recall
that a model of this type was successfully used by
Dombrovsky [18] to explain the experimental data for



Fig. 7. Isolines of the normal emittance in the plane of ðt0
s,tr ,t0

a Þ for

(a) n¼1 and (b) n¼2. Solid lines are obtained with the use of the normal

reflection coefficient in Eq. (10) and dashed lines—with the use of

averaged reflection coefficient (11).
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thermal radiation of a foam on sea surface as applied to
the microwave remote sensing [7].

The second type of problems for which the proposed
model may be inadequate involves volumetric scattering
of infrared radiation by a sample of disperse medium with
an average distance between the particles (or pores) and
the sample boundary comparable with the particle size
and/or radiation wavelength. In this case, the total inter-
nal reflection is practically not observed, contrasting to
the assumption of Fresnel’s boundaries in the present
model. The true index of refraction of the host medium
should then be replaced by an effective index of refraction
of the heterogeneous medium.

The above discussion leads to the conclusion that the
choice of an appropriate physical model cannot be for-
malized. This difficulty is a direct consequence of the
phenomenological character of the traditional radiation
transfer theory. At the same time, a rigorous analysis
based on the electromagnetic wave theory is usually
computationally too demanding to be applied to real
engineering systems.

Examples of previous pertinent studies on high-tem-
perature emittance characterization of semi-transparent
media can be found in [19–24]. The main challenge of the
experimental procedure is related to isothermal heating
of a sample by uniform external irradiation, e.g. using
lasers or arc-lamps [20,23,24]. In the works of Rozenbaum
et al. [19], Manara et al. [22], and Delmas et al. [23], the
emittance was obtained by employing both experimental
and theoretical methods. The theoretical methods were
complex such as ray tracing or DOM. As a result, the
formal inverse problem solution may be time consuming.
Lopes et al. [21] identified radiative properties of opaque
packed spheres from inverse method combining radiation
measurements and theoretical modeling. Theoretical
directional spectral emittance of an absorbing and scat-
tering isothermal system of packed spheres is predicted
by a radiative model based on the discrete ordinates
method.

Thus, it is more practical to use simpler modeling
techniques such as the current approximate analytical
solution. Indeed, to determine the infrared radiative
properties of a dispersed material at elevated tempera-
tures, one can combine the results of ordinary measure-
ments at room temperature and the normal emittance
measurements at a high temperature. This method was
used in the recent study [24]. It was assumed that the
sample porosity, the index of refraction, and the transport
scattering coefficient are practically independent of tem-
perature. This assumption is supported by the known
experimental data [25] and it is expected to be correct in
the range of semi-transparency, at least far from the
Christiansen wavelength, where n¼1. In this combined
approach, a variation of the normal emittance with
temperature is treated as a result of a temperature
variation of the absorption coefficient.

The analytical solution for normal emittance allows for
verification of the identification procedure of the absorp-
tion coefficient based on the emittance measurements.
Such verification is needed because inverse radiative
transfer problems are typically ill-posed. Consider the
lines of constant normal emittance in a plane of ðt0
s,tr ,t0

aÞ,
where t0

s,tr ¼ ss,trd¼ t0
aotr=ð1�otrÞ. One can see in Fig. 7

that the value of t0
a can be determined from the measure-

ments of en for known values of t0
s,tr . This important result

confirms that the procedure employed by Dombrovsky
et al. [24] to determine high-temperature absorption
coefficient of a porous zirconia ceramics is correct. Note
that another problem statement does not provide a
unique result: one can find two different solutions for
the transport scattering coefficient for known normal
emittance and absorption coefficient of the medium. It
is clear from Fig. 7 that relatively small scattering has no
effect on the identification of the absorption coefficient,
but the effect of scattering increases considerably in the
case of a refracting host medium.

7. Conclusions

A two-step approximate analytical solution to the
normal emittance of a plane parallel layer of an absorbing,
emitting, scattering, and refracting medium is derived
analytically. The derivation is based on the transport
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approximation and the two-step solution method for
radiative transport.

The accuracy of both the transport approximation and
the two-step approximate analytical solution is examined
by comparing its results to those obtained using reference
discrete ordinates and Monte Carlo methods. The accu-
racy of the two-step approximate analytical solution is
satisfactory in all cases investigated, making the approx-
imate solution suitable for practical applications such as
identification of radiative properties, in particular the
absorption coefficient of scattering materials such as
porous ceramics, based on measurements of normal
emittance. In the latter case, the scattering properties
should be obtained independently.

The traditional problem statement used in this paper
may be inadequate to the physical reality in some cases.
One should recall a contradiction between the Fresnel
boundary condition and a significant volumetric scatter-
ing near the interface as well as thermal radiation in
opacity spectral ranges when very thin samples appear to
be optically thick and surface effects are predominant. In
the latter case, one can consider a similar approach to
model the effect of surface roughness assuming the
independent absorption and scattering by the surface
elements.
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